Individually addressed entangling gates in a two-dimensional ion crystal
Abstract Two-dimensional (2D) ion crystals may represent a promising path to scale up qubit numbers for ion trap quantum information processing. However, to realize universal quantum computing in this system, individually addressed high-fidelity two-qubit entangling gates still remain challenging du...
Main Authors: | , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2024-11-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-024-53405-z |