On the number of unit solutions of cubic congruence modulo n

For any positive integer $ n $, let $ \mathbb Z_n: = \mathbb Z/n\mathbb Z = \{0, \ldots, n-1\} $ be the ring of residue classes module $ n $, and let $ \mathbb{Z}_n^{\times}: = \{x\in \mathbb Z_n|\gcd(x, n) = 1\} $. In 1926, for any fixed $ c\in\mathbb Z_n $, A. Brauer studied the linear congruence...

Full description

Bibliographic Details
Main Author: Junyong Zhao
Format: Article
Language:English
Published: AIMS Press 2021-09-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2021784?viewType=HTML