On the number of unit solutions of cubic congruence modulo n

For any positive integer $ n $, let $ \mathbb Z_n: = \mathbb Z/n\mathbb Z = \{0, \ldots, n-1\} $ be the ring of residue classes module $ n $, and let $ \mathbb{Z}_n^{\times}: = \{x\in \mathbb Z_n|\gcd(x, n) = 1\} $. In 1926, for any fixed $ c\in\mathbb Z_n $, A. Brauer studied the linear congruence...

Full description

Bibliographic Details
Main Author: Junyong Zhao
Format: Article
Language:English
Published: AIMS Press 2021-09-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2021784?viewType=HTML
_version_ 1819147722321559552
author Junyong Zhao
author_facet Junyong Zhao
author_sort Junyong Zhao
collection DOAJ
description For any positive integer $ n $, let $ \mathbb Z_n: = \mathbb Z/n\mathbb Z = \{0, \ldots, n-1\} $ be the ring of residue classes module $ n $, and let $ \mathbb{Z}_n^{\times}: = \{x\in \mathbb Z_n|\gcd(x, n) = 1\} $. In 1926, for any fixed $ c\in\mathbb Z_n $, A. Brauer studied the linear congruence $ x_1+\cdots+x_m\equiv c\pmod n $ with $ x_1, \ldots, x_m\in\mathbb{Z}_n^{\times} $ and gave a formula of its number of incongruent solutions. Recently, Taki Eldin extended A. Brauer's result to the quadratic case. In this paper, for any positive integer $ n $, we give an explicit formula for the number of incongruent solutions of the following cubic congruence $ x_1^3+\cdots +x_m^3\equiv 0\pmod n\ \ \ {\rm with} \ x_1, \ldots, x_m \in \mathbb{Z}_n^{\times}. $
first_indexed 2024-12-22T13:34:20Z
format Article
id doaj.art-a8b30d439cc343d1bb3d762e3c172e66
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-22T13:34:20Z
publishDate 2021-09-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-a8b30d439cc343d1bb3d762e3c172e662022-12-21T18:24:06ZengAIMS PressAIMS Mathematics2473-69882021-09-01612135151352410.3934/math.2021784On the number of unit solutions of cubic congruence modulo nJunyong Zhao01. Mathematical College, Sichuan University, Chengdu 610064, China 2. School of Mathematics and Physics, Nanyang Institute of Technology, Nanyang 473004, ChinaFor any positive integer $ n $, let $ \mathbb Z_n: = \mathbb Z/n\mathbb Z = \{0, \ldots, n-1\} $ be the ring of residue classes module $ n $, and let $ \mathbb{Z}_n^{\times}: = \{x\in \mathbb Z_n|\gcd(x, n) = 1\} $. In 1926, for any fixed $ c\in\mathbb Z_n $, A. Brauer studied the linear congruence $ x_1+\cdots+x_m\equiv c\pmod n $ with $ x_1, \ldots, x_m\in\mathbb{Z}_n^{\times} $ and gave a formula of its number of incongruent solutions. Recently, Taki Eldin extended A. Brauer's result to the quadratic case. In this paper, for any positive integer $ n $, we give an explicit formula for the number of incongruent solutions of the following cubic congruence $ x_1^3+\cdots +x_m^3\equiv 0\pmod n\ \ \ {\rm with} \ x_1, \ldots, x_m \in \mathbb{Z}_n^{\times}. $https://www.aimspress.com/article/doi/10.3934/math.2021784?viewType=HTMLcubic congruenceexponential sumsunit solutions
spellingShingle Junyong Zhao
On the number of unit solutions of cubic congruence modulo n
AIMS Mathematics
cubic congruence
exponential sums
unit solutions
title On the number of unit solutions of cubic congruence modulo n
title_full On the number of unit solutions of cubic congruence modulo n
title_fullStr On the number of unit solutions of cubic congruence modulo n
title_full_unstemmed On the number of unit solutions of cubic congruence modulo n
title_short On the number of unit solutions of cubic congruence modulo n
title_sort on the number of unit solutions of cubic congruence modulo n
topic cubic congruence
exponential sums
unit solutions
url https://www.aimspress.com/article/doi/10.3934/math.2021784?viewType=HTML
work_keys_str_mv AT junyongzhao onthenumberofunitsolutionsofcubiccongruencemodulon