Robust Field-level Inference of Cosmological Parameters with Dark Matter Halos

We train graph neural networks on halo catalogs from Gadget N -body simulations to perform field-level likelihood-free inference of cosmological parameters. The catalogs contain ≲5000 halos with masses ≳10 ^10 h ^−1 M _⊙ in a periodic volume of ${(25\,{h}^{-1}\,\mathrm{Mpc})}^{3}$ ; every halo in th...

Description complète

Détails bibliographiques
Auteurs principaux: Helen Shao, Francisco Villaescusa-Navarro, Pablo Villanueva-Domingo, Romain Teyssier, Lehman H. Garrison, Marco Gatti, Derek Inman, Yueying Ni, Ulrich P. Steinwandel, Mihir Kulkarni, Eli Visbal, Greg L. Bryan, Daniel Anglés-Alcázar, Tiago Castro, Elena Hernández-Martínez, Klaus Dolag
Format: Article
Langue:English
Publié: IOP Publishing 2023-01-01
Collection:The Astrophysical Journal
Sujets:
Accès en ligne:https://doi.org/10.3847/1538-4357/acac7a