Robust Field-level Inference of Cosmological Parameters with Dark Matter Halos
We train graph neural networks on halo catalogs from Gadget N -body simulations to perform field-level likelihood-free inference of cosmological parameters. The catalogs contain ≲5000 halos with masses ≳10 ^10 h ^−1 M _⊙ in a periodic volume of ${(25\,{h}^{-1}\,\mathrm{Mpc})}^{3}$ ; every halo in th...
Main Authors: | Helen Shao, Francisco Villaescusa-Navarro, Pablo Villanueva-Domingo, Romain Teyssier, Lehman H. Garrison, Marco Gatti, Derek Inman, Yueying Ni, Ulrich P. Steinwandel, Mihir Kulkarni, Eli Visbal, Greg L. Bryan, Daniel Anglés-Alcázar, Tiago Castro, Elena Hernández-Martínez, Klaus Dolag |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2023-01-01
|
Series: | The Astrophysical Journal |
Subjects: | |
Online Access: | https://doi.org/10.3847/1538-4357/acac7a |
Similar Items
-
Robust Field-level Likelihood-free Inference with Galaxies
by: Natalí S. M. de Santi, et al.
Published: (2023-01-01) -
Cosmology with One Galaxy? The ASTRID Model and Robustness
by: Nicolas Echeverri-Rojas, et al.
Published: (2023-01-01) -
Cosmological and Astrophysical Parameter Inference from Stacked Galaxy Cluster Profiles Using CAMELS-zoomGZ
by: Elena Hernández-Martínez, et al.
Published: (2025-01-01) -
Cosmological Inference from within the Peculiar Local Universe
by: Roya Mohayaee, et al.
Published: (2024-05-01) -
Cosmic Chronometers, Pantheon+ Supernovae, and Quasars Favor Coasting Cosmologies over the Flat ΛCDM Model
by: Peter Raffai, et al.
Published: (2025-01-01)