Modified Autoencoder Training and Scoring for Robust Unsupervised Anomaly Detection in Deep Learning
The autoencoder (AE) is a fundamental deep learning approach to anomaly detection. AEs are trained on the assumption that abnormal inputs will produce higher reconstruction errors than normal ones. In practice, however, this assumption is unreliable in the unsupervised case, where the training data...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9099561/ |