Modified Autoencoder Training and Scoring for Robust Unsupervised Anomaly Detection in Deep Learning
The autoencoder (AE) is a fundamental deep learning approach to anomaly detection. AEs are trained on the assumption that abnormal inputs will produce higher reconstruction errors than normal ones. In practice, however, this assumption is unreliable in the unsupervised case, where the training data...
Main Authors: | Nicholas Merrill, Azim Eskandarian |
---|---|
格式: | 文件 |
语言: | English |
出版: |
IEEE
2020-01-01
|
丛编: | IEEE Access |
主题: | |
在线阅读: | https://ieeexplore.ieee.org/document/9099561/ |
相似书籍
-
Robust multi-stage progressive autoencoder for hyperspectral anomaly detection
由: Qing Guo, et al.
出版: (2024-11-01) -
A cascaded autoencoder unmixing network for Hyperspectral anomaly detection
由: Kun Li, et al.
出版: (2025-02-01) -
Pixel-associated autoencoder for hyperspectral anomaly detection
由: Pei Xiang, et al.
出版: (2024-05-01) -
Hyperspectral Anomaly Detection Based on Spatial–Spectral Cross-Guided Mask Autoencoder
由: Qing Guo, et al.
出版: (2024-01-01) -
Unsupervised anomaly detection in shearers via autoencoder networks and multi-scale correlation matrix reconstruction
由: Yang Song, et al.
出版: (2024-10-01)