SM-SegNet: A Lightweight Squeeze M-SegNet for Tissue Segmentation in Brain MRI Scans

In this paper, we propose a novel squeeze M-SegNet (SM-SegNet) architecture featuring a fire module to perform accurate as well as fast segmentation of the brain on magnetic resonance imaging (MRI) scans. The proposed model utilizes uniform input patches, combined-connections, long skip connections,...

Full description

Bibliographic Details
Main Authors: Nagaraj Yamanakkanavar, Jae Young Choi, Bumshik Lee
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/22/14/5148