A comparative analysis of linear regression, neural networks and random forest regression for predicting air ozone employing soft sensor models
Abstract The proposed methodology presents a comprehensive analysis of soft sensor modeling techniques for air ozone prediction. We compare the performance of three different modeling techniques: LR (linear regression), NN (neural networks), and RFR (random forest regression). Additionally, we evalu...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2023-12-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-023-49899-0 |