Time-varying generalized linear models: characterizing and decoding neuronal dynamics in higher visual areas

To create a behaviorally relevant representation of the visual world, neurons in higher visual areas exhibit dynamic response changes to account for the time-varying interactions between external (e.g., visual input) and internal (e.g., reward value) factors. The resulting high-dimensional represent...

詳細記述

書誌詳細
主要な著者: Geyu Weng, Kelsey Clark, Amir Akbarian, Behrad Noudoost, Neda Nategh
フォーマット: 論文
言語:English
出版事項: Frontiers Media S.A. 2024-01-01
シリーズ:Frontiers in Computational Neuroscience
主題:
オンライン・アクセス:https://www.frontiersin.org/articles/10.3389/fncom.2024.1273053/full