On the non-exponential decay to equilibrium of solutions of nonlinear scalar Volterra integro-differential equations

We study the rate of decay of solutions of the scalar nonlinear Volterra equation \[ x'(t)=-f(x(t))+ \int_{0}^{t} k(t-s)g(x(s))\,ds,\quad x(0)=x_0 \] which satisfy $x(t)\to 0$ as $t\to\infty$. We suppose that $xg(x)>0$ for all $x\not=0$, and that $f$ and $g$ are continuous, continuously diff...

Full description

Bibliographic Details
Main Authors: John Appleby, D. W. Reynolds
Format: Article
Language:English
Published: University of Szeged 2004-08-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=169