Information-Corrected Estimation: A Generalization Error Reducing Parameter Estimation Method

Modern computational models in supervised machine learning are often highly parameterized universal approximators. As such, the value of the parameters is unimportant, and only the out of sample performance is considered. On the other hand much of the literature on model estimation assumes that the...

Full description

Bibliographic Details
Main Authors: Matthew Dixon, Tyler Ward
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/11/1419