Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors
Transcriptional factors (TFs) bind in a combinatorial fashion to specify the on-and-off states of genes in a complex and redundant regulatory network. Here, the authors construct the transcription regulatory network in maize leaf using 104 TFs ChIP-seq data and train machine learning models to predi...
主要な著者: | Xiaoyu Tu, María Katherine Mejía-Guerra, Jose A. Valdes Franco, David Tzeng, Po-Yu Chu, Wei Shen, Yingying Wei, Xiuru Dai, Pinghua Li, Edward S. Buckler, Silin Zhong |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Nature Portfolio
2020-10-01
|
シリーズ: | Nature Communications |
オンライン・アクセス: | https://doi.org/10.1038/s41467-020-18832-8 |
類似資料
-
Author Correction: Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors
著者:: Xiaoyu Tu, 等
出版事項: (2023-03-01) -
Impact of artefact removal on ChIP quality metrics in ChIP-seq and ChIP-exo data.
著者:: Thomas Samuel Carroll, 等
出版事項: (2014-04-01) -
ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis
著者:: Karchenko Peter V, 等
出版事項: (2011-02-01) -
ChIP-Seq in Candida albicans
著者:: Sadri Znaidi, 等
出版事項: (2014-06-01) -
ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data
著者:: Pagès Hervé, 等
出版事項: (2010-05-01)