Accurate Prediction and Reliable Parameter Optimization of Neural Network for Semiconductor Process Monitoring and Technology Development
Herein, novel neural network (NN) methods that improve prediction accuracy and reduce output variance of the optimized input in the gradient method for cross‐sectional data are proposed, and the variability evaluation approach of optimized inputs in the semiconductor process is suggested. Specifical...
Auteurs principaux: | Hyeok Yun, Chang-Hyeon An, Hyundong Jang, Kyeongrae Cho, Jeong-Sik Lee, Seungjoon Eom, Choong-Ki Kim, Min-Soo Yoo, Hyun-Chul Choi, Rock-Hyun Baek |
---|---|
Format: | Article |
Langue: | English |
Publié: |
Wiley
2023-09-01
|
Collection: | Advanced Intelligent Systems |
Sujets: | |
Accès en ligne: | https://doi.org/10.1002/aisy.202300089 |
Documents similaires
-
Nonlinear Variation Decomposition of Neural Networks for Holistic Semiconductor Process Monitoring
par: Hyeok Yun, et autres
Publié: (2024-10-01) -
Modeling of 3D NAND Characteristics for Cross‐Temperature by Using Graph Neural Network and Its Application
par: Kyeongrae Cho, et autres
Publié: (2023-12-01) -
Neural Compact Modeling Framework for Flexible Model Parameter Selection with High Accuracy and Fast SPICE Simulation
par: Seungjoon Eom, et autres
Publié: (2024-04-01) -
Optimal Energetic-Trap Distribution of Nano-Scaled Charge Trap Nitride for Wider <i>V<sub>th</sub></i> Window in 3D NAND Flash Using a Machine-Learning Method
par: Kihoon Nam, et autres
Publié: (2022-05-01) -
Forecasting Air Quality Index Using an Ensemble of Artificial Neural Networks and Regression Models
par: Sankar Ganesh S., et autres
Publié: (2017-11-01)