Accurate Prediction and Reliable Parameter Optimization of Neural Network for Semiconductor Process Monitoring and Technology Development
Herein, novel neural network (NN) methods that improve prediction accuracy and reduce output variance of the optimized input in the gradient method for cross‐sectional data are proposed, and the variability evaluation approach of optimized inputs in the semiconductor process is suggested. Specifical...
Main Authors: | Hyeok Yun, Chang-Hyeon An, Hyundong Jang, Kyeongrae Cho, Jeong-Sik Lee, Seungjoon Eom, Choong-Ki Kim, Min-Soo Yoo, Hyun-Chul Choi, Rock-Hyun Baek |
---|---|
פורמט: | Article |
שפה: | English |
יצא לאור: |
Wiley
2023-09-01
|
סדרה: | Advanced Intelligent Systems |
נושאים: | |
גישה מקוונת: | https://doi.org/10.1002/aisy.202300089 |
פריטים דומים
-
Nonlinear Variation Decomposition of Neural Networks for Holistic Semiconductor Process Monitoring
מאת: Hyeok Yun, et al.
יצא לאור: (2024-10-01) -
Modeling of 3D NAND Characteristics for Cross‐Temperature by Using Graph Neural Network and Its Application
מאת: Kyeongrae Cho, et al.
יצא לאור: (2023-12-01) -
Neural Compact Modeling Framework for Flexible Model Parameter Selection with High Accuracy and Fast SPICE Simulation
מאת: Seungjoon Eom, et al.
יצא לאור: (2024-04-01) -
Optimal Energetic-Trap Distribution of Nano-Scaled Charge Trap Nitride for Wider <i>V<sub>th</sub></i> Window in 3D NAND Flash Using a Machine-Learning Method
מאת: Kihoon Nam, et al.
יצא לאור: (2022-05-01) -
Forecasting Air Quality Index Using an Ensemble of Artificial Neural Networks and Regression Models
מאת: Sankar Ganesh S., et al.
יצא לאור: (2017-11-01)