Accurate Prediction and Reliable Parameter Optimization of Neural Network for Semiconductor Process Monitoring and Technology Development
Herein, novel neural network (NN) methods that improve prediction accuracy and reduce output variance of the optimized input in the gradient method for cross‐sectional data are proposed, and the variability evaluation approach of optimized inputs in the semiconductor process is suggested. Specifical...
Үндсэн зохиолчид: | Hyeok Yun, Chang-Hyeon An, Hyundong Jang, Kyeongrae Cho, Jeong-Sik Lee, Seungjoon Eom, Choong-Ki Kim, Min-Soo Yoo, Hyun-Chul Choi, Rock-Hyun Baek |
---|---|
Формат: | Өгүүллэг |
Хэл сонгох: | English |
Хэвлэсэн: |
Wiley
2023-09-01
|
Цуврал: | Advanced Intelligent Systems |
Нөхцлүүд: | |
Онлайн хандалт: | https://doi.org/10.1002/aisy.202300089 |
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Nonlinear Variation Decomposition of Neural Networks for Holistic Semiconductor Process Monitoring
-н: Hyeok Yun, зэрэг
Хэвлэсэн: (2024-10-01) -
Modeling of 3D NAND Characteristics for Cross‐Temperature by Using Graph Neural Network and Its Application
-н: Kyeongrae Cho, зэрэг
Хэвлэсэн: (2023-12-01) -
Neural Compact Modeling Framework for Flexible Model Parameter Selection with High Accuracy and Fast SPICE Simulation
-н: Seungjoon Eom, зэрэг
Хэвлэсэн: (2024-04-01) -
Optimal Energetic-Trap Distribution of Nano-Scaled Charge Trap Nitride for Wider <i>V<sub>th</sub></i> Window in 3D NAND Flash Using a Machine-Learning Method
-н: Kihoon Nam, зэрэг
Хэвлэсэн: (2022-05-01) -
Forecasting Air Quality Index Using an Ensemble of Artificial Neural Networks and Regression Models
-н: Sankar Ganesh S., зэрэг
Хэвлэсэн: (2017-11-01)