Fast Multi-Objective Optimization of Multi-Parameter Antenna Structures Based on Improved BPNN Surrogate Model
In this paper, a surrogate model based on a sparsely connected back propagation neural networks (SC-BPNN) is proposed to reduce the large computational cost of conventional multi-objective antenna optimization problems. In this model, the connection parameters and network structure can be adaptively...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2019-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8731852/ |