Generating realistic scaled complex networks

Abstract Research on generative models plays a central role in the emerging field of network science, studying how statistical patterns found in real networks could be generated by formal rules. Output from these generative models is then the basis for designing and evaluating computational methods...

詳細記述

書誌詳細
主要な著者: Christian L. Staudt, Michael Hamann, Alexander Gutfraind, Ilya Safro, Henning Meyerhenke
フォーマット: 論文
言語:English
出版事項: SpringerOpen 2017-10-01
シリーズ:Applied Network Science
主題:
オンライン・アクセス:http://link.springer.com/article/10.1007/s41109-017-0054-z