GLTM: A Global and Local Word Embedding-Based Topic Model for Short Texts
Short texts have become a kind of prevalent source of information, and discovering topical information from short text collections is valuable for many applications. Due to the length limitation, conventional topic models based on document-level word co-occurrence information often fail to distill s...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2018-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8425711/ |