Damped Newton Stochastic Gradient Descent Method for Neural Networks Training
First-order methods such as stochastic gradient descent (SGD) have recently become popular optimization methods to train deep neural networks (DNNs) for good generalization; however, they need a long training time. Second-order methods which can lower the training time are scarcely used on account o...
المؤلفون الرئيسيون: | Jingcheng Zhou, Wei Wei, Ruizhi Zhang, Zhiming Zheng |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
MDPI AG
2021-06-01
|
سلاسل: | Mathematics |
الموضوعات: | |
الوصول للمادة أونلاين: | https://www.mdpi.com/2227-7390/9/13/1533 |
مواد مشابهة
-
Adaptive Stochastic Gradient Descent Method for Convex and Non-Convex Optimization
حسب: Ruijuan Chen, وآخرون
منشور في: (2022-11-01) -
The Improved Stochastic Fractional Order Gradient Descent Algorithm
حسب: Yang Yang, وآخرون
منشور في: (2023-08-01) -
Recent Advances in Stochastic Gradient Descent in Deep Learning
حسب: Yingjie Tian, وآخرون
منشور في: (2023-01-01) -
A Geometric Interpretation of Stochastic Gradient Descent Using Diffusion Metrics
حسب: Rita Fioresi, وآخرون
منشور في: (2020-01-01) -
Stochastic gradient descent with random label noises: doubly stochastic models and inference stabilizer
حسب: Haoyi Xiong, وآخرون
منشور في: (2024-01-01)