Damped Newton Stochastic Gradient Descent Method for Neural Networks Training
First-order methods such as stochastic gradient descent (SGD) have recently become popular optimization methods to train deep neural networks (DNNs) for good generalization; however, they need a long training time. Second-order methods which can lower the training time are scarcely used on account o...
主要な著者: | Jingcheng Zhou, Wei Wei, Ruizhi Zhang, Zhiming Zheng |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
MDPI AG
2021-06-01
|
シリーズ: | Mathematics |
主題: | |
オンライン・アクセス: | https://www.mdpi.com/2227-7390/9/13/1533 |
類似資料
-
Adaptive Stochastic Gradient Descent Method for Convex and Non-Convex Optimization
著者:: Ruijuan Chen, 等
出版事項: (2022-11-01) -
The Improved Stochastic Fractional Order Gradient Descent Algorithm
著者:: Yang Yang, 等
出版事項: (2023-08-01) -
Recent Advances in Stochastic Gradient Descent in Deep Learning
著者:: Yingjie Tian, 等
出版事項: (2023-01-01) -
A Geometric Interpretation of Stochastic Gradient Descent Using Diffusion Metrics
著者:: Rita Fioresi, 等
出版事項: (2020-01-01) -
Stochastic gradient descent with random label noises: doubly stochastic models and inference stabilizer
著者:: Haoyi Xiong, 等
出版事項: (2024-01-01)