On the Efficient Implementation of Sparse Bayesian Learning-Based STAP Algorithms
Sparse Bayesian learning-based space–time adaptive processing (SBL-STAP) algorithms can achieve superior clutter suppression performance with limited training sample support in practical heterogeneous and non-stationary clutter environments. However, when the system has high degrees of freedom (DOFs...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-08-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/14/16/3931 |