Efficient Implementation of Mahalanobis Distance on Ferroelectric FinFET Crossbar for Outlier Detection
The developments in the nascent field of artificial-intelligence-of-things (AIoT) relies heavily on the availability of high-quality multi-dimensional data. A huge amount of data is being collected in this era of big data, predominantly for AI/ML algorithms and emerging applications. Considering suc...
Auteurs principaux: | Musaib Rafiq, Yogesh Singh Chauhan, Shubham Sahay |
---|---|
Format: | Article |
Langue: | English |
Publié: |
IEEE
2024-01-01
|
Collection: | IEEE Journal of the Electron Devices Society |
Sujets: | |
Accès en ligne: | https://ieeexplore.ieee.org/document/10563982/ |
Documents similaires
-
Comparative Study of Novel u-Shaped SOI FinFET Against Multiple-Fin Bulk/SOI FinFET
par: Myoungsu Son, et autres
Publié: (2023-01-01) -
The Impact of Hysteresis Effect on Device Characteristic and Reliability for Various Fin-Widths Tri-Gate Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> Ferroelectric FinFET
par: Wen-Qi Zhang, et autres
Publié: (2023-04-01) -
A method to simulate multivariate outliers with known mahalanobis distances for normal and non-normal data
par: Oscar L. Olvera Astivia
Publié: (2024-12-01) -
Ferroelectric Transistor-Based Synaptic Crossbar Arrays: The Impact of Ferroelectric Thickness and Device-Circuit Interactions
par: Chunguang Wang, et autres
Publié: (2024-01-01) -
Sub-60-mV/decade Negative Capacitance FinFET With Sub-10-nm Hafnium-Based Ferroelectric Capacitor
par: Eunah Ko, et autres
Publié: (2017-01-01)