GENERAL QUASILINEAR PROBLEMS INVOLVING \(p(x)\)-LAPLACIAN WITH ROBIN BOUNDARY CONDITION
This paper deals with the existence and multiplicity of solutions for a class of quasilinear problems involving \(p(x)\)-Laplace type equation, namely $$ \left\{\begin{array}{lll} -\mathrm{div}\, (a(| \nabla u|^{p(x)})| \nabla u|^{p(x)-2} \nabla u)= \lambda f(x,u)&\text{in}&\Omega,\\ n\cdot...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences and Ural Federal University named after the first President of Russia B.N.Yeltsin.
2020-07-01
|
Series: | Ural Mathematical Journal |
Subjects: | |
Online Access: | https://umjuran.ru/index.php/umj/article/view/186 |