GENERAL QUASILINEAR PROBLEMS INVOLVING \(p(x)\)-LAPLACIAN WITH ROBIN BOUNDARY CONDITION

This paper deals with the existence and multiplicity of solutions for a class of quasilinear problems involving \(p(x)\)-Laplace type equation, namely $$ \left\{\begin{array}{lll} -\mathrm{div}\, (a(| \nabla u|^{p(x)})| \nabla u|^{p(x)-2} \nabla u)= \lambda f(x,u)&\text{in}&\Omega,\\ n\cdot...

Full description

Bibliographic Details
Main Authors: Hassan Belaouidel, Anass Ourraoui, Najib Tsouli
Format: Article
Language:English
Published: Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences and Ural Federal University named after the first President of Russia B.N.Yeltsin. 2020-07-01
Series:Ural Mathematical Journal
Subjects:
Online Access:https://umjuran.ru/index.php/umj/article/view/186