The finite speed of propagation for solutions to stochastic viscoelastic wave equation
Abstract In this paper, a class of second order stochastic evolution equations with memory utt(t,x)−Δu(t,x)+∫0tg(t−s)Δu(s,x)ds+f(u)=σ(u)∂W(x,t)∂t,x∈D⊂Rn, $$ u_{tt}(t,x)-\Delta u(t,x)+ \int _{0}^{t} g(t-s)\Delta u(s,x)\,ds+f(u)= \sigma (u)\frac{\partial W(x,t)}{\partial t}, \quad x\in D\subset \mathb...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-07-01
|
Series: | Boundary Value Problems |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13661-019-1226-9 |