Two-Degrees-of-Freedom PID Control with Kalman Filter for Engraving Machine System

For an engraving machine system with input dynamic disturbance and output random measurement noise, a two-degrees-of-freedom proportional integral derivative (2-DOF PID) control method based on the Kalman filter is firstly proposed in this paper, which can effectively reject the input disturbance an...

Full description

Bibliographic Details
Main Authors: Shijian Dong, Leilei Hao, Yiqin Shao, Jun Liu, Lixin Han
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:Actuators
Subjects:
Online Access:https://www.mdpi.com/2076-0825/12/11/399
Description
Summary:For an engraving machine system with input dynamic disturbance and output random measurement noise, a two-degrees-of-freedom proportional integral derivative (2-DOF PID) control method based on the Kalman filter is firstly proposed in this paper, which can effectively reject the input disturbance and ensure the set point tracking performance of the controller. The 2-DOF controller consists of a disturbance rejection controller and a set point tracking controller. The disturbance rejection controller is composed of a PID controller based on a disturbance observer and expectation model. The parameters of the set point tracking controller are tuned using a differential evolution algorithm (DE), and the cumulative absolute error value (IAE) is used as the fitness function of the DE algorithm, which can improve the rationality of intelligent parameter tuning. In addition, the Kalman filter is also applied to deal with the output noise to suppress the influence of the output measurement uncertainty. Finally, compared with existing algorithms, the feasibility and superiority of the proposed algorithm are verified using numerical simulation and an experimental test.
ISSN:2076-0825