On (m,n)-Derivations of Some Algebras

Let A be a unital algebra, δ be a linear mapping from A into itself and m, n be fixed integers. We call δ an (m, n)-derivable mapping at Z, if mδ(AB) + nδ(BA) = mδ(A)B + mAδ(B) + nδ(B)A for all A,B ∈ A with AB = Z. In this paper, (m, n)-derivable mappings at 0 (resp. IA ⊕ 0, I) on generalized matrix...

Full description

Bibliographic Details
Main Authors: Shen Qihua, Li Jiankui, Guo Jianbin
Format: Article
Language:English
Published: De Gruyter 2014-07-01
Series:Demonstratio Mathematica
Subjects:
Online Access:http://www.degruyter.com/view/j/dema.2014.47.issue-3/dema-2014-0054/dema-2014-0054.xml?format=INT