Extension of the Rigid-Constraint Method for the Heuristic Suboptimal Parameter Tuning to Ten Sensor Fusion Algorithms Using Inertial and Magnetic Sensing

The orientation of a magneto-inertial measurement unit can be estimated using a sensor fusion algorithm (SFA). However, orientation accuracy is greatly affected by the choice of the SFA parameter values which represents one of the most critical steps. A commonly adopted approach is to fine-tune para...

पूर्ण विवरण

ग्रंथसूची विवरण
मुख्य लेखकों: Marco Caruso, Angelo Maria Sabatini, Marco Knaflitz, Ugo Della Croce, Andrea Cereatti
स्वरूप: लेख
भाषा:English
प्रकाशित: MDPI AG 2021-09-01
श्रृंखला:Sensors
विषय:
ऑनलाइन पहुंच:https://www.mdpi.com/1424-8220/21/18/6307
_version_ 1827681263455043584
author Marco Caruso
Angelo Maria Sabatini
Marco Knaflitz
Ugo Della Croce
Andrea Cereatti
author_facet Marco Caruso
Angelo Maria Sabatini
Marco Knaflitz
Ugo Della Croce
Andrea Cereatti
author_sort Marco Caruso
collection DOAJ
description The orientation of a magneto-inertial measurement unit can be estimated using a sensor fusion algorithm (SFA). However, orientation accuracy is greatly affected by the choice of the SFA parameter values which represents one of the most critical steps. A commonly adopted approach is to fine-tune parameter values to minimize the difference between estimated and true orientation. However, this can only be implemented within the laboratory setting by requiring the use of a concurrent gold-standard technology. To overcome this limitation, a Rigid-Constraint Method (RCM) was proposed to estimate suboptimal parameter values without relying on any orientation reference. The RCM method effectiveness was successfully tested on a single-parameter SFA, with an average error increase with respect to the optimal of 1.5 deg. In this work, the applicability of the RCM was evaluated on 10 popular SFAs with multiple parameters under different experimental scenarios. The average residual between the optimal and suboptimal errors amounted to 0.6 deg with a maximum of 3.7 deg. These encouraging results suggest the possibility to properly tune a generic SFA on different scenarios without using any reference. The synchronized dataset also including the optical data and the SFA codes are available online.
first_indexed 2024-03-10T07:13:43Z
format Article
id doaj.art-aedd5e5a66d74e3bacf93b52ae8e639c
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-03-10T07:13:43Z
publishDate 2021-09-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-aedd5e5a66d74e3bacf93b52ae8e639c2023-11-22T15:14:50ZengMDPI AGSensors1424-82202021-09-012118630710.3390/s21186307Extension of the Rigid-Constraint Method for the Heuristic Suboptimal Parameter Tuning to Ten Sensor Fusion Algorithms Using Inertial and Magnetic SensingMarco Caruso0Angelo Maria Sabatini1Marco Knaflitz2Ugo Della Croce3Andrea Cereatti4PolitoBIOMed Lab—Biomedical Engineering Lab, Politecnico di Torino, 10129 Torino, ItalyDepartment of Excellence in Robotics & AI, The BioRobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, ItalyPolitoBIOMed Lab—Biomedical Engineering Lab, Politecnico di Torino, 10129 Torino, ItalyDepartment of Biomedical Sciences, University of Sassari, 07100 Sassari, ItalyDepartment of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, ItalyThe orientation of a magneto-inertial measurement unit can be estimated using a sensor fusion algorithm (SFA). However, orientation accuracy is greatly affected by the choice of the SFA parameter values which represents one of the most critical steps. A commonly adopted approach is to fine-tune parameter values to minimize the difference between estimated and true orientation. However, this can only be implemented within the laboratory setting by requiring the use of a concurrent gold-standard technology. To overcome this limitation, a Rigid-Constraint Method (RCM) was proposed to estimate suboptimal parameter values without relying on any orientation reference. The RCM method effectiveness was successfully tested on a single-parameter SFA, with an average error increase with respect to the optimal of 1.5 deg. In this work, the applicability of the RCM was evaluated on 10 popular SFAs with multiple parameters under different experimental scenarios. The average residual between the optimal and suboptimal errors amounted to 0.6 deg with a maximum of 3.7 deg. These encouraging results suggest the possibility to properly tune a generic SFA on different scenarios without using any reference. The synchronized dataset also including the optical data and the SFA codes are available online.https://www.mdpi.com/1424-8220/21/18/6307orientation estimationsensor fusionMIMUfilter parameter tuningkalman filtercomplementary filter
spellingShingle Marco Caruso
Angelo Maria Sabatini
Marco Knaflitz
Ugo Della Croce
Andrea Cereatti
Extension of the Rigid-Constraint Method for the Heuristic Suboptimal Parameter Tuning to Ten Sensor Fusion Algorithms Using Inertial and Magnetic Sensing
Sensors
orientation estimation
sensor fusion
MIMU
filter parameter tuning
kalman filter
complementary filter
title Extension of the Rigid-Constraint Method for the Heuristic Suboptimal Parameter Tuning to Ten Sensor Fusion Algorithms Using Inertial and Magnetic Sensing
title_full Extension of the Rigid-Constraint Method for the Heuristic Suboptimal Parameter Tuning to Ten Sensor Fusion Algorithms Using Inertial and Magnetic Sensing
title_fullStr Extension of the Rigid-Constraint Method for the Heuristic Suboptimal Parameter Tuning to Ten Sensor Fusion Algorithms Using Inertial and Magnetic Sensing
title_full_unstemmed Extension of the Rigid-Constraint Method for the Heuristic Suboptimal Parameter Tuning to Ten Sensor Fusion Algorithms Using Inertial and Magnetic Sensing
title_short Extension of the Rigid-Constraint Method for the Heuristic Suboptimal Parameter Tuning to Ten Sensor Fusion Algorithms Using Inertial and Magnetic Sensing
title_sort extension of the rigid constraint method for the heuristic suboptimal parameter tuning to ten sensor fusion algorithms using inertial and magnetic sensing
topic orientation estimation
sensor fusion
MIMU
filter parameter tuning
kalman filter
complementary filter
url https://www.mdpi.com/1424-8220/21/18/6307
work_keys_str_mv AT marcocaruso extensionoftherigidconstraintmethodfortheheuristicsuboptimalparametertuningtotensensorfusionalgorithmsusinginertialandmagneticsensing
AT angelomariasabatini extensionoftherigidconstraintmethodfortheheuristicsuboptimalparametertuningtotensensorfusionalgorithmsusinginertialandmagneticsensing
AT marcoknaflitz extensionoftherigidconstraintmethodfortheheuristicsuboptimalparametertuningtotensensorfusionalgorithmsusinginertialandmagneticsensing
AT ugodellacroce extensionoftherigidconstraintmethodfortheheuristicsuboptimalparametertuningtotensensorfusionalgorithmsusinginertialandmagneticsensing
AT andreacereatti extensionoftherigidconstraintmethodfortheheuristicsuboptimalparametertuningtotensensorfusionalgorithmsusinginertialandmagneticsensing