Tensor Robust Principal Component Analysis via Non-Convex Low Rank Approximation
Tensor Robust Principal Component Analysis (TRPCA) plays a critical role in handling high multi-dimensional data sets, aiming to recover the low-rank and sparse components both accurately and efficiently. In this paper, different from current approach, we developed a new t-Gamma tensor quasi-norm as...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-04-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/9/7/1411 |