Metformin Reduces Potassium Currents and Prolongs Repolarization in Non-Diabetic Heart

Metformin is the first choice drug for the treatment of type 2 diabetes due to positive results in reducing hyperglycaemia and insulin resistance. However, diabetic patients have higher risk of ventricular arrhythmia and sudden cardiac death, and metformin failed to reduce ventricular arrhythmia in...

Full description

Bibliographic Details
Main Authors: Layse Malagueta-Vieira, Julieta Fernández-Ruocco, María P. Hortigón-Vinagre, Víctor Zamora, Julián Zayas-Arrabal, Leyre Echeazarra, Godfrey L. Smith, Martín Vila Petroff, Emiliano Medei, Óscar Casis, Mónica Gallego
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/23/11/6021
_version_ 1797493183266947072
author Layse Malagueta-Vieira
Julieta Fernández-Ruocco
María P. Hortigón-Vinagre
Víctor Zamora
Julián Zayas-Arrabal
Leyre Echeazarra
Godfrey L. Smith
Martín Vila Petroff
Emiliano Medei
Óscar Casis
Mónica Gallego
author_facet Layse Malagueta-Vieira
Julieta Fernández-Ruocco
María P. Hortigón-Vinagre
Víctor Zamora
Julián Zayas-Arrabal
Leyre Echeazarra
Godfrey L. Smith
Martín Vila Petroff
Emiliano Medei
Óscar Casis
Mónica Gallego
author_sort Layse Malagueta-Vieira
collection DOAJ
description Metformin is the first choice drug for the treatment of type 2 diabetes due to positive results in reducing hyperglycaemia and insulin resistance. However, diabetic patients have higher risk of ventricular arrhythmia and sudden cardiac death, and metformin failed to reduce ventricular arrhythmia in clinical trials. In order to explore the mechanisms responsible for the lack of protective effect, we investigated in vivo the effect of metformin on cardiac electrical activity in non-diabetic rats; and in vitro in isolated ventricular myocytes, HEK293 cells expressing the hERG channel and human induced pluripotent stem cells derived cardiomyocytes (hIPS-CMs). Surface electrocardiograms showed that long-term metformin treatment (7 weeks) at therapeutic doses prolonged cardiac repolarization, reflected as QT and QTc interval duration, and increased ventricular arrhythmia during the caffeine/dobutamine challenge. Patch-clamp recordings in ventricular myocytes isolated from treated animals showed that the cellular mechanism is a reduction in the cardiac transient outward potassium current (I<sub>to</sub>). In vitro, incubation with metformin for 24 h also reduced I<sub>to</sub>, prolonged action potential duration, and increased spontaneous contractions in ventricular myocytes isolated from control rats. Metformin incubation also reduced I<sub>hERG</sub> in HEK293 cells. Finally, metformin incubation prolonged action potential duration at 30% and 90% of repolarization in hIPS-CMs, which is compatible with the reduction of I<sub>to</sub> and I<sub>hERG</sub>. Our results show that metformin directly modifies the electrical behavior of the normal heart. The mechanism consists in the inhibition of repolarizing currents and the subsequent decrease in repolarization capacity, which prolongs AP and QTc duration.
first_indexed 2024-03-10T01:16:21Z
format Article
id doaj.art-af4ff86f5846446bb8695c202fa8cb43
institution Directory Open Access Journal
issn 1661-6596
1422-0067
language English
last_indexed 2024-03-10T01:16:21Z
publishDate 2022-05-01
publisher MDPI AG
record_format Article
series International Journal of Molecular Sciences
spelling doaj.art-af4ff86f5846446bb8695c202fa8cb432023-11-23T14:08:12ZengMDPI AGInternational Journal of Molecular Sciences1661-65961422-00672022-05-012311602110.3390/ijms23116021Metformin Reduces Potassium Currents and Prolongs Repolarization in Non-Diabetic HeartLayse Malagueta-Vieira0Julieta Fernández-Ruocco1María P. Hortigón-Vinagre2Víctor Zamora3Julián Zayas-Arrabal4Leyre Echeazarra5Godfrey L. Smith6Martín Vila Petroff7Emiliano Medei8Óscar Casis9Mónica Gallego10Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, 01006 Vitoria-Gasteiz, SpainInstitute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, BrazilInstitute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow, 126 University Place, Glasgow G12 8TA, UKInstitute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow, 126 University Place, Glasgow G12 8TA, UKDepartamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, 01006 Vitoria-Gasteiz, SpainDepartamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, 01006 Vitoria-Gasteiz, SpainInstitute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow, 126 University Place, Glasgow G12 8TA, UKCentro de Investigaciones Cardiovasculares, Conicet La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, ArgentinaInstitute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, BrazilDepartamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, 01006 Vitoria-Gasteiz, SpainDepartamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco UPV/EHU, 01006 Vitoria-Gasteiz, SpainMetformin is the first choice drug for the treatment of type 2 diabetes due to positive results in reducing hyperglycaemia and insulin resistance. However, diabetic patients have higher risk of ventricular arrhythmia and sudden cardiac death, and metformin failed to reduce ventricular arrhythmia in clinical trials. In order to explore the mechanisms responsible for the lack of protective effect, we investigated in vivo the effect of metformin on cardiac electrical activity in non-diabetic rats; and in vitro in isolated ventricular myocytes, HEK293 cells expressing the hERG channel and human induced pluripotent stem cells derived cardiomyocytes (hIPS-CMs). Surface electrocardiograms showed that long-term metformin treatment (7 weeks) at therapeutic doses prolonged cardiac repolarization, reflected as QT and QTc interval duration, and increased ventricular arrhythmia during the caffeine/dobutamine challenge. Patch-clamp recordings in ventricular myocytes isolated from treated animals showed that the cellular mechanism is a reduction in the cardiac transient outward potassium current (I<sub>to</sub>). In vitro, incubation with metformin for 24 h also reduced I<sub>to</sub>, prolonged action potential duration, and increased spontaneous contractions in ventricular myocytes isolated from control rats. Metformin incubation also reduced I<sub>hERG</sub> in HEK293 cells. Finally, metformin incubation prolonged action potential duration at 30% and 90% of repolarization in hIPS-CMs, which is compatible with the reduction of I<sub>to</sub> and I<sub>hERG</sub>. Our results show that metformin directly modifies the electrical behavior of the normal heart. The mechanism consists in the inhibition of repolarizing currents and the subsequent decrease in repolarization capacity, which prolongs AP and QTc duration.https://www.mdpi.com/1422-0067/23/11/6021cardiac electrophysiologyrepolarizationcardiomyocyteion channelsventricular arrhythmiacardiac action potential
spellingShingle Layse Malagueta-Vieira
Julieta Fernández-Ruocco
María P. Hortigón-Vinagre
Víctor Zamora
Julián Zayas-Arrabal
Leyre Echeazarra
Godfrey L. Smith
Martín Vila Petroff
Emiliano Medei
Óscar Casis
Mónica Gallego
Metformin Reduces Potassium Currents and Prolongs Repolarization in Non-Diabetic Heart
International Journal of Molecular Sciences
cardiac electrophysiology
repolarization
cardiomyocyte
ion channels
ventricular arrhythmia
cardiac action potential
title Metformin Reduces Potassium Currents and Prolongs Repolarization in Non-Diabetic Heart
title_full Metformin Reduces Potassium Currents and Prolongs Repolarization in Non-Diabetic Heart
title_fullStr Metformin Reduces Potassium Currents and Prolongs Repolarization in Non-Diabetic Heart
title_full_unstemmed Metformin Reduces Potassium Currents and Prolongs Repolarization in Non-Diabetic Heart
title_short Metformin Reduces Potassium Currents and Prolongs Repolarization in Non-Diabetic Heart
title_sort metformin reduces potassium currents and prolongs repolarization in non diabetic heart
topic cardiac electrophysiology
repolarization
cardiomyocyte
ion channels
ventricular arrhythmia
cardiac action potential
url https://www.mdpi.com/1422-0067/23/11/6021
work_keys_str_mv AT laysemalaguetavieira metforminreducespotassiumcurrentsandprolongsrepolarizationinnondiabeticheart
AT julietafernandezruocco metforminreducespotassiumcurrentsandprolongsrepolarizationinnondiabeticheart
AT mariaphortigonvinagre metforminreducespotassiumcurrentsandprolongsrepolarizationinnondiabeticheart
AT victorzamora metforminreducespotassiumcurrentsandprolongsrepolarizationinnondiabeticheart
AT julianzayasarrabal metforminreducespotassiumcurrentsandprolongsrepolarizationinnondiabeticheart
AT leyreecheazarra metforminreducespotassiumcurrentsandprolongsrepolarizationinnondiabeticheart
AT godfreylsmith metforminreducespotassiumcurrentsandprolongsrepolarizationinnondiabeticheart
AT martinvilapetroff metforminreducespotassiumcurrentsandprolongsrepolarizationinnondiabeticheart
AT emilianomedei metforminreducespotassiumcurrentsandprolongsrepolarizationinnondiabeticheart
AT oscarcasis metforminreducespotassiumcurrentsandprolongsrepolarizationinnondiabeticheart
AT monicagallego metforminreducespotassiumcurrentsandprolongsrepolarizationinnondiabeticheart