Effects of pH alteration on respiratory syncytial virus in human airway epithelial cells

Background Respiratory syncytial virus (RSV) is a leading cause of respiratory distress and hospitalisation in the paediatric population. Low airway surface pH impairs antimicrobial host defence and worsens airway inflammation. Inhaled Optate safely raises airway surface pH in humans and raises intr...

Full description

Bibliographic Details
Main Authors: Jessica L. Saunders, Ivana A. Daniels, Taiya L. Edwards, Ryan F. Relich, Yi Zhao, Laura A. Smith, Benjamin M. Gaston, Michael D. Davis
Format: Article
Language:English
Published: European Respiratory Society 2023-07-01
Series:ERJ Open Research
Online Access:http://openres.ersjournals.com/content/9/4/00404-2022.full
Description
Summary:Background Respiratory syncytial virus (RSV) is a leading cause of respiratory distress and hospitalisation in the paediatric population. Low airway surface pH impairs antimicrobial host defence and worsens airway inflammation. Inhaled Optate safely raises airway surface pH in humans and raises intracellular pH in primary human airway epithelial cells (HAECs) in vitro. We aimed to determine whether raising intracellular pH with Optate would decrease infection and replication of RSV in primary HAECs. Methods We cultured HAECs from healthy subjects in both air–liquid interface and submerged conditions. We infected HAECs with green fluorescent protein-labelled RSV (GFP-RSV; multiplicity of infection=1) and treated them with Optate or PBS control. We collected supernatant after a 4-h incubation and then every 24 h. We used fluorescence intensity, fluorescent particle counts, plaque assays, Western blots and ELISA to quantitate infection. Results In submerged culture, fluorescence intensity decreased in Optate-treated cells (48 h p=0.0174, 72 h p≤0.001). Similarly, Optate treatment resulted in decreased fluorescent particle count (48 h p=0.0178, 72 h p=0.0019) and plaque-forming units (48 h p=0.0011, 72 h p=0.0148) from cell culture supernatant. In differentiated HAECs cultured at ALI, Optate treatment decreased fluorescence intensity (p≤0.01), GFP via Western blot and ELISA (p<0.0001), and RSV-fusion protein via ELISA (p=0.001). Additionally, RSV infection decreased as Optate concentration increased in a dose-dependent manner (p<0.001). Conclusions Optate inhibits RSV infection in primary HAECs in a dose-dependent manner. These findings suggest that Optate may have potential as an inhaled therapeutic for patients with RSV.
ISSN:2312-0541