Parallel Broadband Femtosecond Reflection Spectroscopy at a Soft X-Ray Free-Electron Laser

X-ray absorption spectroscopy (XAS) and the directly linked X-ray reflectivity near absorption edges yield a wealth of specific information on the electronic structure around the resonantly addressed element. Observing the dynamic response of complex materials to optical excitations in pump–probe ex...

Full description

Bibliographic Details
Main Authors: Robin Y. Engel, Piter S. Miedema, Diego Turenne, Igor Vaskivskyi, Günter Brenner, Siarhei Dziarzhytski, Marion Kuhlmann, Jan O. Schunck, Florian Döring, Andriy Styervoyedov, Stuart S.P. Parkin, Christian David, Christian Schüßler-Langeheine, Hermann A. Dürr, Martin Beye
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/19/6947
_version_ 1827704921614450688
author Robin Y. Engel
Piter S. Miedema
Diego Turenne
Igor Vaskivskyi
Günter Brenner
Siarhei Dziarzhytski
Marion Kuhlmann
Jan O. Schunck
Florian Döring
Andriy Styervoyedov
Stuart S.P. Parkin
Christian David
Christian Schüßler-Langeheine
Hermann A. Dürr
Martin Beye
author_facet Robin Y. Engel
Piter S. Miedema
Diego Turenne
Igor Vaskivskyi
Günter Brenner
Siarhei Dziarzhytski
Marion Kuhlmann
Jan O. Schunck
Florian Döring
Andriy Styervoyedov
Stuart S.P. Parkin
Christian David
Christian Schüßler-Langeheine
Hermann A. Dürr
Martin Beye
author_sort Robin Y. Engel
collection DOAJ
description X-ray absorption spectroscopy (XAS) and the directly linked X-ray reflectivity near absorption edges yield a wealth of specific information on the electronic structure around the resonantly addressed element. Observing the dynamic response of complex materials to optical excitations in pump–probe experiments requires high sensitivity to small changes in the spectra which in turn necessitates the brilliance of free electron laser (FEL) pulses. However, due to the fluctuating spectral content of pulses generated by self-amplified spontaneous emission (SASE), FEL experiments often struggle to reach the full sensitivity and time-resolution that FELs can in principle enable. Here, we implement a setup which solves two common challenges in this type of spectroscopy using FELs: First, we achieve a high spectral resolution by using a spectrometer downstream of the sample instead of a monochromator upstream of the sample. Thus, the full FEL bandwidth contributes to the measurement at the same time, and the FEL pulse duration is not elongated by a monochromator. Second, the FEL beam is divided into identical copies by a transmission grating beam splitter so that two spectra from separate spots on the sample (or from the sample and known reference) can be recorded in-parallel with the same spectrometer, enabling a spectrally resolved intensity normalization of pulse fluctuations in pump–probe scenarios. We analyze the capabilities of this setup around the oxygen <i>K-</i> and nickel <i>L-</i>edges recorded with third harmonic radiation of the free electron laser in Hamburg (FLASH), demonstrating the capability for pump–probe measurements with sensitivity to reflectivity changes on the per mill level.
first_indexed 2024-03-10T15:50:57Z
format Article
id doaj.art-b108007393af4586a73f86b1e248874c
institution Directory Open Access Journal
issn 2076-3417
language English
last_indexed 2024-03-10T15:50:57Z
publishDate 2020-10-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj.art-b108007393af4586a73f86b1e248874c2023-11-20T16:03:17ZengMDPI AGApplied Sciences2076-34172020-10-011019694710.3390/app10196947Parallel Broadband Femtosecond Reflection Spectroscopy at a Soft X-Ray Free-Electron LaserRobin Y. Engel0Piter S. Miedema1Diego Turenne2Igor Vaskivskyi3Günter Brenner4Siarhei Dziarzhytski5Marion Kuhlmann6Jan O. Schunck7Florian Döring8Andriy Styervoyedov9Stuart S.P. Parkin10Christian David11Christian Schüßler-Langeheine12Hermann A. Dürr13Martin Beye14Deutsches Elektronen Synchrotron, 22607 Hamburg, GermanyDeutsches Elektronen Synchrotron, 22607 Hamburg, GermanyDepartment of Physics and Astronomy, Uppsala University, S-75120 Uppsala, SwedenDepartment of Physics and Astronomy, Uppsala University, S-75120 Uppsala, SwedenDeutsches Elektronen Synchrotron, 22607 Hamburg, GermanyDeutsches Elektronen Synchrotron, 22607 Hamburg, GermanyDeutsches Elektronen Synchrotron, 22607 Hamburg, GermanyDeutsches Elektronen Synchrotron, 22607 Hamburg, GermanyPaul Scherrer Institut, 5232 Villigen-PSI, SwitzerlandMax-Planck Institut für Mikrostrukturphysik, Weinberg 2, 06108-06132 Halle, GermanyMax-Planck Institut für Mikrostrukturphysik, Weinberg 2, 06108-06132 Halle, GermanyPaul Scherrer Institut, 5232 Villigen-PSI, SwitzerlandHelmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, GermanyDepartment of Physics and Astronomy, Uppsala University, S-75120 Uppsala, SwedenDeutsches Elektronen Synchrotron, 22607 Hamburg, GermanyX-ray absorption spectroscopy (XAS) and the directly linked X-ray reflectivity near absorption edges yield a wealth of specific information on the electronic structure around the resonantly addressed element. Observing the dynamic response of complex materials to optical excitations in pump–probe experiments requires high sensitivity to small changes in the spectra which in turn necessitates the brilliance of free electron laser (FEL) pulses. However, due to the fluctuating spectral content of pulses generated by self-amplified spontaneous emission (SASE), FEL experiments often struggle to reach the full sensitivity and time-resolution that FELs can in principle enable. Here, we implement a setup which solves two common challenges in this type of spectroscopy using FELs: First, we achieve a high spectral resolution by using a spectrometer downstream of the sample instead of a monochromator upstream of the sample. Thus, the full FEL bandwidth contributes to the measurement at the same time, and the FEL pulse duration is not elongated by a monochromator. Second, the FEL beam is divided into identical copies by a transmission grating beam splitter so that two spectra from separate spots on the sample (or from the sample and known reference) can be recorded in-parallel with the same spectrometer, enabling a spectrally resolved intensity normalization of pulse fluctuations in pump–probe scenarios. We analyze the capabilities of this setup around the oxygen <i>K-</i> and nickel <i>L-</i>edges recorded with third harmonic radiation of the free electron laser in Hamburg (FLASH), demonstrating the capability for pump–probe measurements with sensitivity to reflectivity changes on the per mill level.https://www.mdpi.com/2076-3417/10/19/6947X-ray absorption spectroscopyfree electron laserintensity normalizationtransmission gratingX-ray reflectivity
spellingShingle Robin Y. Engel
Piter S. Miedema
Diego Turenne
Igor Vaskivskyi
Günter Brenner
Siarhei Dziarzhytski
Marion Kuhlmann
Jan O. Schunck
Florian Döring
Andriy Styervoyedov
Stuart S.P. Parkin
Christian David
Christian Schüßler-Langeheine
Hermann A. Dürr
Martin Beye
Parallel Broadband Femtosecond Reflection Spectroscopy at a Soft X-Ray Free-Electron Laser
Applied Sciences
X-ray absorption spectroscopy
free electron laser
intensity normalization
transmission grating
X-ray reflectivity
title Parallel Broadband Femtosecond Reflection Spectroscopy at a Soft X-Ray Free-Electron Laser
title_full Parallel Broadband Femtosecond Reflection Spectroscopy at a Soft X-Ray Free-Electron Laser
title_fullStr Parallel Broadband Femtosecond Reflection Spectroscopy at a Soft X-Ray Free-Electron Laser
title_full_unstemmed Parallel Broadband Femtosecond Reflection Spectroscopy at a Soft X-Ray Free-Electron Laser
title_short Parallel Broadband Femtosecond Reflection Spectroscopy at a Soft X-Ray Free-Electron Laser
title_sort parallel broadband femtosecond reflection spectroscopy at a soft x ray free electron laser
topic X-ray absorption spectroscopy
free electron laser
intensity normalization
transmission grating
X-ray reflectivity
url https://www.mdpi.com/2076-3417/10/19/6947
work_keys_str_mv AT robinyengel parallelbroadbandfemtosecondreflectionspectroscopyatasoftxrayfreeelectronlaser
AT pitersmiedema parallelbroadbandfemtosecondreflectionspectroscopyatasoftxrayfreeelectronlaser
AT diegoturenne parallelbroadbandfemtosecondreflectionspectroscopyatasoftxrayfreeelectronlaser
AT igorvaskivskyi parallelbroadbandfemtosecondreflectionspectroscopyatasoftxrayfreeelectronlaser
AT gunterbrenner parallelbroadbandfemtosecondreflectionspectroscopyatasoftxrayfreeelectronlaser
AT siarheidziarzhytski parallelbroadbandfemtosecondreflectionspectroscopyatasoftxrayfreeelectronlaser
AT marionkuhlmann parallelbroadbandfemtosecondreflectionspectroscopyatasoftxrayfreeelectronlaser
AT janoschunck parallelbroadbandfemtosecondreflectionspectroscopyatasoftxrayfreeelectronlaser
AT floriandoring parallelbroadbandfemtosecondreflectionspectroscopyatasoftxrayfreeelectronlaser
AT andriystyervoyedov parallelbroadbandfemtosecondreflectionspectroscopyatasoftxrayfreeelectronlaser
AT stuartspparkin parallelbroadbandfemtosecondreflectionspectroscopyatasoftxrayfreeelectronlaser
AT christiandavid parallelbroadbandfemtosecondreflectionspectroscopyatasoftxrayfreeelectronlaser
AT christianschußlerlangeheine parallelbroadbandfemtosecondreflectionspectroscopyatasoftxrayfreeelectronlaser
AT hermannadurr parallelbroadbandfemtosecondreflectionspectroscopyatasoftxrayfreeelectronlaser
AT martinbeye parallelbroadbandfemtosecondreflectionspectroscopyatasoftxrayfreeelectronlaser