Accuracy of generative deep learning model for macular anatomy prediction from optical coherence tomography images in macular hole surgery
Abstract This study aims to propose a generative deep learning model (GDLM) based on a variational autoencoder that predicts macular optical coherence tomography (OCT) images following full-thickness macular hole (FTMH) surgery and evaluate its clinical accuracy. Preoperative and 6-month postoperati...
المؤلفون الرئيسيون: | , , , , |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Nature Portfolio
2024-03-01
|
سلاسل: | Scientific Reports |
الموضوعات: | |
الوصول للمادة أونلاين: | https://doi.org/10.1038/s41598-024-57562-5 |