An Improved Dynamic Window Approach Based on Reinforcement Learning for the Trajectory Planning of Automated Guided Vehicles
The traditional dynamic window approach (DWA) adopts the constant intervals for the sampling window, which limits the trajectory exploration possibility. This paper employs the twin delayed deep deterministic policy gradient (TD3) approach to generate a reinforcement-learning-based auxiliary candida...
Principais autores: | , , , , , , |
---|---|
Formato: | Artigo |
Idioma: | English |
Publicado em: |
IEEE
2024-01-01
|
coleção: | IEEE Access |
Assuntos: | |
Acesso em linha: | https://ieeexplore.ieee.org/document/10459192/ |