Identifying the need for infection-related consultations in intensive care patients using machine learning models
Abstract Infection-related consultations on intensive care units (ICU) have a positive impact on quality of care and clinical outcome. However, timing of these consultations is essential and to date they are typically event-triggered and reactive. Here, we investigate a proactive approach to identif...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2024-01-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-024-52741-w |