Bayesian learning of chemisorption for bridging the complexity of electronic descriptors

Developing a generalizable model to describe adsorption processes at metal surfaces can be extremely challenging due to complex phenomena involved. Here the authors introduce a Bayesian learning approach based on ab initio data and the d-band model to capture the essential physics of adsorbate–subst...

Ful tanımlama

Detaylı Bibliyografya
Asıl Yazarlar: Siwen Wang, Hemanth Somarajan Pillai, Hongliang Xin
Materyal Türü: Makale
Dil:English
Baskı/Yayın Bilgisi: Nature Portfolio 2020-11-01
Seri Bilgileri:Nature Communications
Online Erişim:https://doi.org/10.1038/s41467-020-19524-z