Bayesian learning of chemisorption for bridging the complexity of electronic descriptors

Developing a generalizable model to describe adsorption processes at metal surfaces can be extremely challenging due to complex phenomena involved. Here the authors introduce a Bayesian learning approach based on ab initio data and the d-band model to capture the essential physics of adsorbate–subst...

Descripción completa

Detalles Bibliográficos
Autores principales: Siwen Wang, Hemanth Somarajan Pillai, Hongliang Xin
Formato: Artículo
Lenguaje:English
Publicado: Nature Portfolio 2020-11-01
Colección:Nature Communications
Acceso en línea:https://doi.org/10.1038/s41467-020-19524-z