An Improved Kernel Minimum Square Error Classification Algorithm Based on $L_{2,1}$ -Norm Regularization
The kernel minimum square error classification (KMSEC) algorithm has been widely used in classification problems. It shows a good performance on image data besides the following drawbacks: not sparse in the solutions and sensitive to noises. The latter drawback will result in a decrease in the recog...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2017-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/7987683/ |