Summary: | The inspection-class Remotely Operated Vehicles (ROVs) are crucial in underwater inspections. Their prime function is to allow the replacing of humans during risky subaquatic operations. These vehicles gather videos from underwater scenes that are sent online to a human operator who provides control. Furthermore, these videos are used for analysis. This demands an RGB camera operating at a close distance to the observed objects. Thus, to obtain a detailed depiction, the vehicle should move with a constant speed and a measured distance from the bottom. As very few inspection-class ROVs possess navigation systems that facilitate these requirements, this study had the objective of designing a vision-based control method to compensate for this limitation. To this end, a stereo vision system and image-feature matching and tracking techniques were employed. As these tasks are challenging in the underwater environment, we carried out analyses aimed at finding fast and reliable image-processing techniques. The analyses, through a sequence of experiments designed to test effectiveness, were carried out in a swimming pool using a VideoRay Pro 4 vehicle. The results indicate that the method under consideration enables automatic control of the vehicle, given that the image features are present in stereo-pair images as well as in consecutive frames captured by the left camera.
|