Exploring the interrelationships between composition, rheology, and compressive strength of self-compacting concrete: An exploration of explainable boosting algorithms
This study introduces a novel methodology for enhancing the compressive strength of self-compacting concrete (SCC) via the use of the Explainable Boosting Machine (EBM), a sophisticated and interpretable machine learning algorithm. It presents a data-driven model that aims to accurately predict the...
主要な著者: | Sarmed Wahab, Babatunde Abiodun Salami, Ali H. AlAteah, Mohammed M.H. Al-Tholaia, Turki S. Alahmari |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Elsevier
2024-07-01
|
シリーズ: | Case Studies in Construction Materials |
主題: | |
オンライン・アクセス: | http://www.sciencedirect.com/science/article/pii/S2214509524002353 |
類似資料
-
Comparative Analysis of Gradient-Boosting Ensembles for Estimation of Compressive Strength of Quaternary Blend Concrete
著者:: Ismail B. Mustapha, 等
出版事項: (2024-04-01) -
Concrete compressive strength prediction using an explainable boosting machine model
著者:: Gaoyang Liu, 等
出版事項: (2023-07-01) -
Combining the Strengths of the Explainable Boosting Machine and Metabolomics Approaches for Biomarker Discovery in Acute Myocardial Infarction
著者:: Ahmet Kadir Arslan, 等
出版事項: (2024-06-01) -
Application of boosted trees to the prognosis prediction of COVID‐19
著者:: Sajjad Molaei, 等
出版事項: (2024-05-01) -
Explainable Boosting Machines for Slope Failure Spatial Predictive Modeling
著者:: Aaron E. Maxwell, 等
出版事項: (2021-12-01)