Circ-UBR4 regulates the proliferation, migration, inflammation, and apoptosis in ox-LDL-induced vascular smooth muscle cells via miR-515-5p/IGF2 axis

The aim of our study is to disclose the role and underlying molecular mechanisms of circular RNA ubiquitin protein ligase E3 component n-recognin 4 (circ-UBR4) in atherosclerosis (AS). Our data showed that circ-UBR4 expression was upregulated in AS patients and oxidized low-density lipoprotein (ox-L...

Full description

Bibliographic Details
Main Authors: Feng Liuliu, Liu Tianhua, Shi Jun, Wang Yu, Yang Yuya, Xiao Wenyin, Bai Yanyan
Format: Article
Language:English
Published: De Gruyter 2023-08-01
Series:Open Medicine
Subjects:
Online Access:https://doi.org/10.1515/med-2023-0751
Description
Summary:The aim of our study is to disclose the role and underlying molecular mechanisms of circular RNA ubiquitin protein ligase E3 component n-recognin 4 (circ-UBR4) in atherosclerosis (AS). Our data showed that circ-UBR4 expression was upregulated in AS patients and oxidized low-density lipoprotein (ox-LDL)-induced vascular smooth muscle cells (VSMCs) compared with healthy volunteer and untreated VSMCs. In addition, ox-LDL stimulated proliferation, migration, and inflammation but decreased apoptosis in VSMCs, which were overturned by the inhibition of circ-UBR4. miR-515-5p was sponged by circ-UBR4, and its inhibitor reversed the inhibitory effect of circ-UBR4 knockdown on proliferation, migration, and inflammation in ox-LDL-induced VSMCs. Insulin-like growth factor2 (IGF2) was a functional target of miR-515-5p, and overexpression of IGF2 reversed the suppressive effect of miR-515-5p on ox-LDL-stimulated VSMCs proliferation, migration, and inflammation. Collectively, circ-UBR4 knockdown decreased proliferation, migration, and inflammation but stimulated apoptosis in ox-LDL-induced VSMCs by targeting the miR-515-5p/IGF2 axis.
ISSN:2391-5463