基于多重分形与CPSO-SVM的车辆传动箱状态识别研究

针对车辆传动箱振动信号的非线性,提出一种将多重分形与支持向量机相结合的状态识别方法。运用奇异谱和广义维数来描述其振动信号特征,并将其作为支持向量机的输入特征量。将改进的混沌粒子群算法引入到支持向量机参数优化中,实现对惩罚函数c和径向基函数σ的智能优化选取。实验结果表明,该方法建立的SVM分类模型能够对车辆传动箱不同运行状态进行分类,并且具有更高的准确率。...

Full description

Bibliographic Details
Main Authors: 刘超, 马振书, 孙华刚, 郝驰宇
Format: Article
Language:zho
Published: Editorial Office of Journal of Mechanical Transmission 2015-01-01
Series:Jixie chuandong
Subjects:
Online Access:http://www.jxcd.net.cn/thesisDetails#10.16578/j.issn.1004.2539.2015.05.041