Attention-Based Residual BiLSTM Networks for Human Activity Recognition
Human activity recognition (HAR) commonly employs wearable sensors to identify and analyze the time series data collected by them, enabling the recognition of specific actions. However, the current fusion of convolutional and recurrent neural networks in existing approaches encounters difficulties w...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2023-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10234401/ |