Evaluating Timeliness and Accuracy Trade-offs of Supervised Machine Learning for Adapting Enterprise DRE Systems in Dynamic Environments

Several adaptation approaches have been devised to ensure end-to-end quality-of-service (QoS) for enterprise distributed systems in dynamic operating environments. Not all approaches are applicable, however, for the stringent accuracy, timeliness, and development complexity requirements of distribut...

詳細記述

書誌詳細
主要な著者: Joe Hoffert, Douglas C. Schmidt, Aniruddha Gokhale
フォーマット: 論文
言語:English
出版事項: Springer 2011-10-01
シリーズ:International Journal of Computational Intelligence Systems
オンライン・アクセス:https://www.atlantis-press.com/article/2364.pdf