A Customized ADMM Approach for Large-Scale Nonconvex Semidefinite Programming
We investigate a class of challenging general semidefinite programming problems with extra nonconvex constraints such as matrix rank constraints. This problem has extensive applications, including combinatorial graph problems, such as MAX-CUT and community detection, reformulated as quadratic object...
Autor principal: | Chuangchuang Sun |
---|---|
Formato: | Artículo |
Lenguaje: | English |
Publicado: |
MDPI AG
2023-10-01
|
Colección: | Mathematics |
Materias: | |
Acceso en línea: | https://www.mdpi.com/2227-7390/11/21/4413 |
Ejemplares similares
-
An ADMM-based SQP method for separably smooth nonconvex optimization
por: Meixing Liu, et al.
Publicado: (2020-03-01) -
Subsampling algorithms for semidefinite programming
por: Alexandre W. d'Aspremont
Publicado: (2011-01-01) -
Linearized ADMM for Nonconvex Nonsmooth Optimization With Convergence Analysis
por: Qinghua Liu, et al.
Publicado: (2019-01-01) -
Nonconvex matrix completion with Nesterov’s acceleration
por: Xiao-Bo Jin, et al.
Publicado: (2018-12-01) -
Bounds on Linear PDEs via Semidefinite Optimization
por: Bertsimas, Dimitris J., et al.
Publicado: (2003)