Prediction of Safety Risk Levels of Benzopyrene Residues in Edible Oils in China Based on the Variable-Weight Combined LSTM-XGBoost Prediction Model
To assess and predict the food safety risk of benzopyrene (BaP) in edible oils in China, this study collected national sampling data of edible oils from 20 Chinese provinces and their prefectures in 2019, and constructed a risk assessment model of BaP in edible oils with consumption data. Initially,...
Κύριοι συγγραφείς: | Cheng Hao, Qingchuan Zhang, Shimin Wang, Tongqiang Jiang, Wei Dong |
---|---|
Μορφή: | Άρθρο |
Γλώσσα: | English |
Έκδοση: |
MDPI AG
2023-06-01
|
Σειρά: | Foods |
Θέματα: | |
Διαθέσιμο Online: | https://www.mdpi.com/2304-8158/12/11/2241 |
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Wind Turbine Generator Winding Temperature Prediction Based on XGBoost and LSTM
ανά: Wei TENG, κ.ά.
Έκδοση: (2021-06-01) -
Truck Parking Occupancy Prediction: XGBoost-LSTM Model Fusion
ανά: Sebastian Gutmann, κ.ά.
Έκδοση: (2021-07-01) -
Manipulator Smooth Control Method Based on LSTM-XGboost and Its Optimization Model Construction
ανά: Shiqi Yue, κ.ά.
Έκδοση: (2023-08-01) -
An effective method for anomaly detection in industrial Internet of Things using XGBoost and LSTM
ανά: Zhen Chen, κ.ά.
Έκδοση: (2024-10-01) -
Short-Term Heavy Overload Forecasting of Public Transformers Based on Combined LSTM-XGBoost Model
ανά: Hao Ma, κ.ά.
Έκδοση: (2023-02-01)