A $q$-analog of Ljunggren's binomial congruence

We prove a $q$-analog of a classical binomial congruence due to Ljunggren which states that $\binom{ap}{bp} \equiv \binom{a}{b}$ modulo $p^3$ for primes $p \geq 5$. This congruence subsumes and builds on earlier congruences by Babbage, Wolstenholme and Glaisher for which we recall existing $q$-analo...

Full description

Bibliographic Details
Main Author: Armin Straub
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2011-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/2962/pdf