Minimal unavoidable sets of cycles in plane graphs

A set \(S\) of cycles is minimal unavoidable in a graph family \(\cal{G}\) if each graph \(G \in \cal{G}\) contains a cycle from \(S\) and, for each proper subset \(S^{\prime}\subset S\), there exists an infinite subfamily \(\cal{G}^{\prime}\subseteq\cal{G}\) such that no graph from \(\cal{G}^{\prim...

Full description

Bibliographic Details
Main Authors: Tomáš Madaras, Martina Tamášová
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2018-01-01
Series:Opuscula Mathematica
Subjects:
Online Access:http://www.opuscula.agh.edu.pl/vol38/6/art/opuscula_math_3841.pdf