Advances in VLSI testing at MultiGb per second rates

Today's high performance manufacturing of digital systems requires VLSI testing at speeds of multigigabits per second (multiGbps). Testing at Gbps needs high transfer rates among channels and functional units, and requires readdressing of data format and communication within a serial mode. This...

Full description

Bibliographic Details
Main Author: Topisirović Dragan
Format: Article
Language:English
Published: Faculty of Technical Sciences in Cacak 2005-01-01
Series:Serbian Journal of Electrical Engineering
Subjects:
Online Access:http://www.doiserbia.nb.rs/img/doi/1451-4869/2005/1451-48690501043T.pdf
Description
Summary:Today's high performance manufacturing of digital systems requires VLSI testing at speeds of multigigabits per second (multiGbps). Testing at Gbps needs high transfer rates among channels and functional units, and requires readdressing of data format and communication within a serial mode. This implies that a physical phenomena-jitter, is becoming very essential to tester operation. This establishes functional and design shift, which in turn dictates a corresponding shift in test and DFT (Design for Testability) methods. We, here, review various approaches and discuss the tradeoffs in testing actual devices. For industry, volume-production stage and testing of multigigahertz have economic challenges. A particular solution based on the conventional ATE (Automated Test Equipment) resources, that will be discussed, allows for accurate testing of ICs with many channels and this systems can test ICs at 2.5 Gbps over 144 cannels, with extensions planned that will have test rates exceeding 5 Gbps. Yield improvement requires understanding failures and identifying potential sources of yield loss. This text focuses on diagnosing of random logic circuits and classifying faults. An interesting scan-based diagnosis flow, which leverages the ATPG (Automatic Test Pattern Generator) patterns originally generated for fault coverage, will be described. This flow shows an adequate link between the design automation tools and the testers, and a correlation between the ATPG patterns and the tester failure reports.
ISSN:1451-4869
2217-7183