Random forest model for feature-based Alzheimer's disease conversion prediction from early mild cognitive impairment subjects.

Alzheimer's Disease (AD) conversion prediction from the mild cognitive impairment (MCI) stage has been a difficult challenge. This study focuses on providing an individualized MCI to AD conversion prediction using a balanced random forest model that leverages clinical data. In order to do this,...

Descripción completa

Detalles Bibliográficos
Autores principales: Matthew Velazquez, Yugyung Lee, Alzheimer’s Disease Neuroimaging Initiative
Formato: Artículo
Lenguaje:English
Publicado: Public Library of Science (PLoS) 2021-01-01
Colección:PLoS ONE
Acceso en línea:https://doi.org/10.1371/journal.pone.0244773